O esquema de cinco números (Tukey, 1977) e seu desenho esquemático.

Este é um modelo de representação de um conjunto de dados. Então, foram selecionados a quantidade $n$ de dados, o valor central, ou seja, a mediana $Md$, as juntas (ou quartis), no caso $J_1$ e $J_3$, além dos valores extremos mínimo e máximo. Estes números são organizados conforme a seguinte figura.




Temos, ainda, uma outra representação chamada de desenho esquemático (Morettin). Neste caso, A figura é a seguinte:





Nesta figura, podemos identificar os quartis ou juntas, sendo que $J_2 = Md$. A figura, portanto, destacará o intervalo interquartil, de $J_1$ a $J_3$, portanto, a região em que estão concentrados a metade dos dados. O intervalo interquartil é calculado como $dj = J_3 - J_1$. Os eventuais valores $x$ da figura (podem ser vários), são considerados valores discrepantes ou outliers. Na figura, são valores inferiores a $J_1 - \dfrac{3}{2}dj$ e $J_3+\dfrac{3}{2}dj$. Este parâmetro, $\dfrac{3}{2}dj$ é oriundo de uma distribuição normal e serve para estabelecer um critério para discrepância. A linha que sai dos dois lados do retângulo serve para descrever os limites de dados não discrepantes. Assim, temos uma desenho representativo de um conjunto de dados.

Nenhum comentário:

Postar um comentário

O esquema de cinco números (Tukey, 1977) e seu desenho esquemático.

Este é um modelo de representação de um conjunto de dados. Então, foram selecionados a quantidade $n$ de dados, o valor central, ou seja, a ...