Mostrando postagens com marcador cônicas. Mostrar todas as postagens
Mostrando postagens com marcador cônicas. Mostrar todas as postagens

Considere um sistema cartesiano ortogonal cuja origem $O(0,0)$ é o centro da Terra e a unidade adotada nos eixos $Ox$ e $Oy$ é o km. No plano determinado por esses eixos, um satélite gira em órbita circular com centro $O(0,0)$ e velocidade constante de 12.560 km/h, completando uma volta a cada 5 horas. Admitindo que $\pi = 3,14$, apresente a equação da órbita desse satélite.

Como a órbita é circular, a equação será de uma circunferência cujo centro é o a origem $(0,0)$. Resta-nos apenas calcular o raio.


Como o satélite percorre uma volta em 5h à velocidade de 12560 km/h, podemos obter o comprimento da órbita. Teremos que o comprimento será $5 \cdot 12560 = 62.800 km$


Para calcularmos o raio tomamos a relação do comprimento da circunferência:


$$C = 2 \pi r$$


Logo, $62800 = 2 \pi r \Rightarrow r = \dfrac{62800}{2 \cdot \pi } = 10.000km$


A equação será então:


$$x^2 + y^2 = (10^4)^2 \Rightarrow x^2 + y^2 = 10^8$$

Uma circunferência de raio 5 passa pelo ponto $A(0,4)$ e tem o centro $C$ no eixo das abscissas. Obtenha a equação reduzida dessa circunferência.

 Se a circunferência passa pelo ponto $(0,4)$ e tem seu centro no eixo das abscissas, com raio $r=5$, há duas possibilidades para seu centro. Como esta construção nos lembra o mais famoso triângulo retângulo, o de lados, 3, 4 e 5, podemos usar esta informação para determinar rapidamente os dois centros possíveis que seriam $(3,0)$ e $(-3,0)$.


Agora, com o centro e o raio, podemos facilmente apresentar a equação reduzida da circunferência. Para isto, podemos partir da circunferência de centro na origem. Depois deslocamos a origem.

A equação da circunferência de raio $r$ e centro em $(0,0)$ é


$$x^2 + y^2 = r^2$$


Então temos de deslocar esta equação para o centro $(3,0)$ e raio $r=5$ o que nos leva a:


$$(x - 3)^2 + (y - 0)^2 = 5^2 \Rightarrow (x - 3)^2 + y^2 = 25$$

A outra situação é deslocar a mesma equação para o centro $(-3,0)$ e $r=5$, o que nos leva a:

$$(x + 3)^2 + (y - 0)^2 = 5^2 \Rightarrow (x + 3)^2 + y^2 = 25$$


Posições relativas entre duas circunferências no plano

Para analisarmos as possibilidades das posições relativas de duas circunferências num mesmo plano, podemos pensar assim: dadas duas circunferências, elas podem ter raios iguais ou diferentes. Suponhamos, inicialmente que tenham raios distintos. Sem perda de generalidade, consideremos a posição da circunferência de menor raio à direita. Teremos então a circunferência maior de raio $r_1$ e a menor de raio $r_2$, com $r_1>r_2$.


Podemos iniciar nossa análise, separando situações bem determinadas.


Vamos, então, considerar, inicialmente, que a distância entre seus centros seja maior que a soma dos seus raios. 



Podemos concluir que estas circunferências não terão nenhum ponto em comum.


$$d > r_1 + r_2$$


Uma segunda situação bem definida seria aquela na qual a distância entre os centros é igual à soma dos raios. 



Neste caso, as circunferências serão tangentes e exteriores, ou seja, terão um único ponto em comum, além de serem exteriores.


$$d = r_1 + r_2$$


Uma terceira situação seria colocar a circunferência menor para o interior da maior, na situação em que a diferença entre os raios é igual à distância entre os centros.



Neste caso, temos um único ponto em comum (tangência), sendo uma circunferência interior à outra.


$$d=r_1 - r_2 $$


Podemos ainda considerar a circunferência menor interna à circunferência maior sem qualquer ponto em comum. 



Nesta circunstância, podemos traçar um raio da circunferência maior que passa pelos dois centros das circunferências. Nesta situação, teremos 


$$r_1 > d + r_2 \Rightarrow r_1 - r_2 > d \Rightarrow d < r_1 - r_2$$


Caso as circunferências sejam concêntricas, teremos $d = 0$.




Restam ainda algumas situações a considerarmos. Vamos considerar, inicialmente, a situação em que a circunferência menor apresenta centro externo à maior com dois pontos em comum (secantes). 



Podemos notar que $r_1 < d$, pois o centro da circunferência menor é externo e, ainda, $d < r_1 + r_2$. Assim, elas são secantes.


Uma situação intermediária seria a que o centro da circunferência menor está na borda da circunferência maior. 



Neste caso, $r_1 = d $, logo, $d < r_1 + r_2$, e as circunferências serão secantes. Podemos notar ainda que se $r_1 = d$ então $r_1 - r_2 < d$.


A terceira situação é considerarmos o centro da circunferência menor interior à circunferência maior, ainda com dois pontos em comum (secantes). 



Nesta situação, $d < r_1$ e, além disto, podemos formar um triângulo com os raios e o segmento entre os centros. Podemos concluir, por esta construção, que 


$$r_1 < d + r_2 \Rightarrow r_1 - r_2 < d$$


Nesta nossa análise, podemos resumir a situação de circunferências secantes da seguinte forma. Sem analisarmos a posição do centro da circunferência menor, podemos notar que não é suficiente a informação de que $d < r_1 + r_2$ pois podemos ter, nesta circunstância, $d < r_1 - r_2$, ou seja, circunferência interior sem pontos em comum.


Podemos concluir, então, que a condição para que as duas circunferências sejam secantes é dupla, conforme já visto antes, ou seja, 


$$r_1 - r_2 < d < r_1 + e_2$$


A outra condição que separamos foi a de as circunferências terem raios iguais. Nesta sitaução, a única mudança é a possibilidade de as circunferências coincidirem totalmente. Nas demais situações, as conclusões são as mesmas.


Podemos, por fim, resumir nossa discussão assim:


$d > r_1 + r_2 \Rightarrow$ Circunferências exteriores disjuntas;

$d = r_1 + r_2 \Rightarrow$ Circunferências exteriores tangentes;

$r_1 - r_2 < d < r_1 + r_2 \Rightarrow$ Circunferências secantes;

$d = r_1 - r_2 \Rightarrow$ Circunferência interior tangente;

$d< r_1 - r_2 \Rightarrow$ Circunferência interior disjunta.


(IDECAN - Prof. EBTT) Dados dois pares ordenados (2,-4) e (2,0) que representam os vértices de um hipérbole de foco (2, -2 + √13), calcule a equação da hipérbole que satisfaça as condições dadas.

 Inicialmente desenhamos nosso esboço de hipérbole.


Podemos notar que nossa hipérbole tem eixo vertical, logo é originária da hipérbole

$$\dfrac{y^2}{a^2} - \dfrac{x^2}{b^2}=1$$

Lembrando que o $2a$ é sempre a distância entre os vértices, logo $2a = 4 \Rightarrow a = 2$.

O $b$ sempre é o cateto perpendicular ao eixo, logo resta ao $c$ ser nossa hipotenusa. No caso, o $c$ é a distância, na reta, entre $\sqrt{13} - 2$ ($\sqrt{13}$ está entre 3 e 4) e $-2$, ou seja, $c = \sqrt{13} - 2 -(-2) = \sqrt{13}$.

Desta forma, $b = \sqrt{13 - 4} = 3$, por Pitágoras.

Então, vamos deslocar nossa equação duas unidades para baixo em relação ao eixo $y$, ou seja, adicionar 2; e duas unidades para a direita no eixo $x$, ou seja, subtrair 2. Com relação ao deslocamento do centro da hipérbole, teremos:

$$\dfrac{(y+2)^2}{a^2} - \dfrac{(x-2)^2}{b^2} = 1$$

Substituindo os valores de $a,b$ chegamos a

$$\dfrac{(y+2)^2}{2^2} - \dfrac{(x-2)^2}{3^2} = 1$$

Agora é transformar na equação geral...

$$\dfrac{(y+2)^2}{4} - \dfrac{(x-2)^2}{9} = 1 \Rightarrow$$

$$\dfrac{y^2 + 4y + 4}{4} - \dfrac{x^2 - 4x + 4}{9} = 1 \Rightarrow$$

$$9y^2 + 36y + 36 - 4x^2 + 16x - 16 = 36 \Rightarrow$$

$$-4x^2 + 9y^2 + 16x + 36y - 16 = 0 \Rightarrow$$

$$4x^2 - 9y^2 - 16x - 36y + 16 = 0$$


A parábola enquanto cônica

 


No caso da parábola, enquanto lugar geométrico da família das cônicas, dado um ponto $F$ e uma reta $r$, ela é o lugar geométrico dos pontos equidistantes de $F$ (foco da parábola) e a reta $r$, chamada de reta diretriz da parábola.

Vamos iniciar nossa historinha desenhando uma parábola de vértice na origem e foco sobre o eixo $x$. A distância do foco até a origem, por onde passa a parábola, deve ser igual à distância da origem até a reta $r$. Logo, podemos já localizar a nossa reta $r$, perpendicular ao eixo $y$. Daí, chamamos à distância da origem ao foco de $c$, logo a distância da origem até a reta é também igual a $c$.

Já podemos determinar alguns parâmetros:

$c > 0$

A reta será $r: x = -c$

$F(c,0)$

Agora, marcamos um ponto $P(x,y)$ qualquer sobre a parábola para, conforme a definição, desenvolvermos a equação do lugar geométrico.

Teremos então:

$d(P,F) = d(P,r) \Rightarrow$

$\sqrt{(x-c)^2 + y^2} = x + c \Rightarrow$

$x^2 -2cx + c^2 + y^2 = x^2 + 2cx + c^2 \Rightarrow $

$\cancel{x^2} -2cx + \cancel{c^2} + y^2 = \cancel{x^2} + 2cx + \cancel{c^2} \Rightarrow $

$$y^2 = 4cx$$

Eis então a equação!

Para deslocar esta equação para o centro $(h,q)$, fazemos:

$$(y-q)^2 = 4c(x-h)$$

Para inverter o gráfico, fazemos:

$$y^2 = -4cx$$

E para deslocar este último gráfico ao centro $(h,q)$, fazemos:

$$(y-q)^2 = -4c(x-h)$$

Por outro lado, para colocarmos o foco da parábola no eixo $y$, basta invertermos as variáveis:

Tomamos a equação $y^2 = 4cx$ e fazemos:

$$x^2 = 4cy$$

Neste caso, a concavidade é para cima.

Para deslocarmos o vértice para o ponto $(h,q)$, fazemos

$$(x-h)^2 = 4c(y-q)$$

Para invertermos a concavidade, temos:

$$x^2 = -4cy$$

E, por fim, para deslocarmos o vértice ao ponto $(h,q)$, fazemos:

$$(x-h)^2 = -4c(y-q)$$


Hipérbole

 


Dados dois pontos distintos numa reta, $F_1$ e $F_2$ Uma hipérbole será o lugar geométrico dos pontos cuja diferença das distâncias em valor absoluto é constante e menor que a distância entre $F_1$ e $F_2$.


Começamos com a hipérbole centrada na origem com focos sobre o eixo $x$. 


Para facilitar a construção sempre que desejar, pode-se iniciar com o desenho da hipérbole. Trace os eixos cartesianos e desenhe os dois ramos da hipérbole nele. Marque então os vértices $V_1$ e $V_2$. A exemplo do que fizemos na elipse, chamamos $V_1V_2$ de $2a$. Bom começo! Marcamos então os focos $F_1$ e $F_2$. Pegamos o segmento $(0,0)$ a $F_2$ e puxamos para cima a partir da origem, fazendo com que, imaginando, sua outra extremidade se arraste até o ponto $V_2$. Temos então o nosso triângulo retângulo. O cateto $b$ sempre é perpendicular a $V_1V_2$, logo, resta concluir que, desta vez, nossa hipotenusa será $c$ e teremos $c^2 = a^2 + b^2$. Esta é uma historinha básica para conduzir à construção da hipérbole. Agora, podemos também desenhar o retângulo que dará suporte às assintotas.


A partir do desenho, podemos deduzir as coisas e prosseguir.


Temos então que:


$a,b,c > 0$


$c^2 = a^2 + b^2$


$F_1(-c,0)$


$F_2(c,0)$


Comecemos, pela definição.

  

$|PF_1 - PF_2| = V_1V_2 = 2a$


Por conta do módulo, dizemos que $PF_1 - PF_2 = \pm 2a$


Assim, podemos prosseguir...


$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a \Rightarrow$


$\sqrt{(x+c)^2 + y^2} = \pm 2a + \sqrt{(x-c)^2 + y^2} \Rightarrow$


Elevamos ao quadrado...


$(x+c)^2 + y^2 = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2 \Rightarrow$


$x^2 + 2cx + c^2 + y^2 = 4a^2 + x^2 -2cx + c^2 + y^2 \pm 4a\sqrt{(x-c)^2 + y^2} \Rightarrow$


$\cancel{x^2} + 2cx + \cancel{c^2} + \cancel{y^2} = 4a^2 + \cancel{x^2} -2cx + \cancel{c^2} + \cancel{y^2} \pm4a\sqrt{(x-c)^2 + y^2} \Rightarrow$


$4cx = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2} \Rightarrow $


$a^2 - cx = \pm a\sqrt{(x-c)^2 + y^2} \Rightarrow $


$a^4 -2ca^2x + c^2x^2 = a^2(x^2 - 2cx + c^2 + y^2)\Rightarrow$


$a^4 -2ca^2x + c^2x^2 = a^2x^2 -2ca^2x + a^2c^2 + a^2y^2\Rightarrow$


$a^4 \cancel{-2ca^2x} + c^2x^2 = a^2x^2 \cancel{-2ca^2x} + a^2c^2 + a^2y^2\Rightarrow$


$a^4 = x^2\underbrace{(a^2 - c^2)}_{-b^2} + a^2y^2 + a^2c^2 \Rightarrow$


$a^4 - a^2c^2 = -b^2x^2 + a^2y^2 \Rightarrow$


$a^2\underbrace{(a^2 - c^2)}_{-b^2} = b^2x^2 + a^2y^2 \Rightarrow$


$-a^2b^2 = -b^2x^2 + a^2y^2$


$a^2b^2 = b^2x^2 - a^2y^2$


O que fazemos agora é dividir tudo por $a^2b^2$ e chegamos a:


$$\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$$


Se deslocarmos o centro da elipse do ponto $(0,0)$ para o ponto $(h,q)$ teremos:


$$\dfrac{(x-h)^2}{a^2} - \dfrac{(y-q)^2}{b^2} = 1$$


Para a elipse de eixo $V_1V_2$ sobre o eixo $y$ basta invertermos o $x$ pelo $y$, e teremos:


$$\dfrac{y^2}{a^2} - \dfrac{x^2}{b^2} = 1$$


E, por fim, se deslocarmos esta elipse para o centro $(h,q)$ chegaremos a:


$$\dfrac{(y-q)^2}{a^2} - \dfrac{(x-h)^2}{b^2} = 1$$

Elipse

 





Dados dois pontos $F_1$ e $F_2$ no plano, chamamos de Elipse o lugar geométrico dos pontos $P$ cuja soma das distâncias $PF_1 + PF_2$ é constante e diferente da distância $F_1F_2$.

Começemos pela elipse centrada na origem com $V_1V_2$ sobre o eixo $x$.

Uma dica pra facilitar a construção da elipse é usar o ponto $V_2$ como suporte para concluir, conforme a definição, que $F_1V_2 + F_2V_2=V_1V_2$. Assim, começa nossa historinha! Ao segmento $V_1V_2$ a gente chama de $2a$. Começamos por aqui. Logo, da origem $(0,0)$ a $V_2$ temos $a$. Então, imaginamos elevando o segmento $a$ a partir da origem até o ponto da elipse no eixo $y$, fazendo com que a sua outra estremidade se arraste até o ponto $F_2$ e chegamos à figurinha do triângulo retângulo. Nesta figura, $b$ sempre é o cateto perpendicular a $V_1V_2$. Já conseguimos, então, enxergar um triângulo retânculo, só falta dar nome ao outro cateto. Assim, por último, chamamos o segmento da origem até $F_2$ de $c$. Temos, então, um triângulo retângulo com $a^2 = b^2 + c^2$.

A partir desta construção inicial, podemos prosseguir, ora deduzindo, ora nos lembrando dos elementos da figura.

Dados: 
$F_1F_2 = 2c$

$V_1V_2 = 2a$

$a^2 = b^2 + c^2$

Construção

$PF_1 + PF_2 = V_1V_2 = 2a$

Dados:

$a,b,c>0$

Pontos:

$F_1(-c,0)$

$F_2(c,0)$

$P(x,y)$

$PF_1 + PF_2 = 2a \Rightarrow$

$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a \Rightarrow$ 

$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2} \Rightarrow$

Elevando ao quadrado ambos os membros, teremos:

$(x+c)^2 + y^2 = 4a^2 -4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2 \Rightarrow$

$x^2 + 2cx + c^2 + y^2 = 4a^2 + x^2 -2cx + c^2 + y^2 -4a\sqrt{(x-c)^2 + y^2} \Rightarrow$

$\cancel{x^2} + 2cx + \cancel{c^2} + \cancel{y^2} = 4a^2 + \cancel{x^2} -2cx + \cancel{c^2} + \cancel{y^2} -4a\sqrt{(x-c)^2 + y^2} \Rightarrow$

$4cx = 4a^2 -4a\sqrt{(x-c)^2 + y^2} \Rightarrow $

$cx = a^2 -a\sqrt{(x-c)^2 + y^2} \Rightarrow  $

$a^2 - cx = a\sqrt{(x-c)^2 + y^2} \Rightarrow $

$a^4 -2ca^2x + c^2x^2 = a^2(x^2 - 2cx + c^2 + y^2)\Rightarrow$

$a^4 -2ca^2x + c^2x^2 = a^2x^2 -2ca^2x + a^2c^2 + a^2y^2\Rightarrow$

$a^4 \cancel{-2ca^2x} + c^2x^2 = a^2x^2 \cancel{-2ca^2x} + a^2c^2 + a^2y^2\Rightarrow$

$a^4 = x^2\underbrace{(a^2 - c^2)}_{b^2} + a^2y^2 + a^2c^2 \Rightarrow$

$a^4 - a^2c^2 = b^2x^2 + a^2y^2 \Rightarrow$

$a^2\underbrace{(a^2 - c^2)}_{b^2} = b^2x^2 + a^2y^2 \Rightarrow$

$a^2b^2 = b^2x^2 + a^2y^2$

O que fazemos agora é dividir tudo por $a^2b^2$ e chegamos a:

$$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$$

Se deslocarmos o centro da elipse do ponto $(0,0)$ para o ponto $(h,q)$ teremos:

$$\dfrac{(x-h)^2}{a^2} + \dfrac{(y-q)^2}{b^2} = 1$$

Para a elipse de eixo $V_1V_2$ sobre o eixo $y$ basta invertermos o $x$ pelo $y$, e teremos:

$$\dfrac{y^2}{a^2} + \dfrac{x^2}{b^2} = 1$$

E, por fim, se deslocarmos esta elipse para o centro $(h,q)$ chegaremos a:

$$\dfrac{(y-q)^2}{a^2} + \dfrac{(x-h)^2}{b^2} = 1$$




Equação reduzida e equação geral da circunferência

A circunferência é o lugar geométrico dos pontos equidistantes a um único ponto dado.


Vamos iniciar com a circunferência no centro do eixo cartesiano. Então, a equação que determina todos os seus pontos é dedutível via Teorema de Pitágoras, em que $x^2 + y^2 = r^2$, onde $r$ é o raio da circunferência.


Para termos a equação da circunferência cujo centro é o ponto $(a,b)$, basta deslocarmos a equação do lugar geométrico no centro $(0,0)$ para o centro $(a,b)$ e teremos:


$$(x-a)^2 + (y-b)^2 = r^2$$


Esta equação que é deduzida via Teorema de Pitágoras é chamada de equação reduzida da circunferência.


Se desenvolvemos esta expressão, vamos chegar à equação geral da circunferência. Vamos lá!


$$x^2 - 2ax + a^2 + y^2 - 2by + b^2 = r^2$$

Logo, a equação geral da circunferência será:


$$x^2 + y^2 - 2ax - 2by + a^2 + b^2 -r^2 = 0$$





 

O esquema de cinco números (Tukey, 1977) e seu desenho esquemático.

Este é um modelo de representação de um conjunto de dados. Então, foram selecionados a quantidade $n$ de dados, o valor central, ou seja, a ...